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TRAPEZOIDAL AND MIDPOINT SPLITTINGS 
FOR INITIAL-BOUNDARY VALUE PROBLEMS 

WILLEM HUNDSDORFER 

ABSTRACT. In this paper we consider various multi-component splittings based 
on the trapezoidal rule and the implicit midpoint rule. It will be shown that 
an important requirement on such methods is internal stability. The methods 
will be applied to initial-boundary value problems. Along with a theoretical 
analysis, some numerical test results will be presented. 

1. INTRODUCTION 

In this paper we will discuss the accuracy and stability of some splitting methods 
which are based on the trapezoidal rule and implicit midpoint rule. The methods 
are used for the numerical solution of initial-boundary value problems for partial 
differential equations (PDEs) in two or three space dimensions with reaction and 
source terms. Discretization in space leads to large systems of ordinary differential 
equations (ODEs) 

(1.1l) U'(t) = F(t, u(t)) 

with 0 < t < T and given initial value u(0). The function F contains the discretized 
spatial derivatives. We consider numerical schemes with step size r yielding approx- 
imations u, to the exact solution u(t,) at time levels t, = nr for n = 0, 1, 2, , 
starting with u0 = u(0). 

Two standard methods are the trapezoidal rule 

(1.2) Un+1 = Un + TrF(tn, Un) + IrF(tn+l, Un+l), 

and the implicit midpoint rule 

(1.3) Un+1 = Un + rF(tn+1/2, IUn + I 
Un+1). 

The methods have order 2 and they are symmetric [4]. Both methods involve an 
implicit system with the whole function F. For discretized multi-dimensional PDEs 
the dimension of the system will be very large and F may also contain different 
types of operations, such as convection-diffusion in various directions and nonlinear 
reaction terms, which makes it difficult to solve the implicit relations efficiently. 
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It is often possible to decompose the function F into a number of simpler com- 
ponent functions, 

(1.4) F(t, w) = Fi(t, w) + F2(t, w) + + Fs(t, w). 

Application of ODE methods to each individual component Fi can be much easier 
than to the whole F. We shall consider some splitting methods where in each stage 
only one of the components is treated implicitly. The best known method of this 
type is the ADI-Peaceman-Rachford method. This method, however, can only deal 
with 2-component splittings, see [13]. The related ADI method of Douglas is suited 
for arbitrary number of components, but it is no longer unconditionally stable for 
convection-diffusion problems if s > 2, see [7]. In this paper we restrict ourselves to 
second order methods that are unconditionally stable, in the von Neumann sense, 
for convection-diffusion problems for any value of s. 

We consider the following method of Yanenko [15], based on a sequence of trape- 
zoidal steps, 

(1.5) 
VO = Uni 

Vi = Vi-1 + IT(Fi(tn + Ci_-T, Vi-t) + Fi(tn + CiT, Vi)) (i =1,2, ,s), 

with internal vectors vi. If one stops here, accepts un+1 = vs as the next approx- 
imation and proceeds likewise in the following steps, the order of the method will 
only be 1, except for special situations with commuting operators. Order 2 of the 
method is obtained if the sequence of F1, F2, , Fs is interchanged in the next 
step (Strang splitting). This gives, with i = 1, 2, , s, 

(1.6) 

Vs+i = Vs+i- i + IT(Fs+l-i (tn+2 - Cs+l-iTi Vs+i-1) + Fs+l-i(tn+2 - Cs-iT Vs+i)) 

Un+2 = V2s 

We use the time levels co = 0, cs = 1. The other cj are set to 1/2, which is somewhat 
arbitrary (see Section 5). Irrespective of the choice, the method is symmetrical and 
of order 2. In the same way one can construct a method using the implicit midpoint 
rule in each of the fractional steps, which will lead to a method with very similar 
errors, see [6]. 

The two formulas (1.5) and (1.6) should be considered together as one step, 
with step size 2r, carrying Un to Un+2 for n = 0, 2,4,. .. We shall compare this 
method of Yanenko with two more simple methods where the fractional steps are 
performed by backward and forward Euler formulas with halved step size. Note 
that the trapezoidal method itself can be viewed as a forward Euler step followed 
by a backward Euler step with halved step size T/2 for the sub-steps. Likewise, 
the implicit midpoint rule consists of a backward Euler step followed by a forward 
Euler step. 

The first method we propose is related, in the above sense, to the trapezoidal rule, 
and will therefore be called trapezoidal splitting, or, more formally, the trapezoidal 
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splitting method. The method is given by 

VO = Uni 

(1.7 vi = Vi_l + ITFi(tn,Vi-1) (i = 1,2, ,s), 

Vs+i = Vs+i_1 + 2TFs+1-i(tn+?ivs+i) (i = 1,2, , s), 

Un+1 = V2s. 

Again, the vectors vj (1 < j < 2s - 1) are internal quantities without physical 
relevance, except for vs which is a consistent approximation to u(tn+l/2). Note 
that if s = 1 the method reduces to the trapezoidal rule. 

Similarly we can construct a splitting method based on the midpoint rule, 

VO = Uni 

(1.8) Vi = Vi_l + 2rFi(tn+1/2, vi) (i = 1,2,. , s), 

Vs+i = vS+i?& + 2TFs+l-i(tn+l/2, Vs+i-1) (i = 1, 2, . . ), 

Un+1 = V2s. 

We shall refer to (1.8) as the midpoint splitting method. 
Both methods (1.7) and (1.8) have order two and they are symmetrical. If all 

Fj are linear, say Fj (t, u) = Aju, with commuting matrices Aj, then the methods 
are identical, namely 

(1.9) Un+= ((I-TrAi)) (n-.1(I +TAi))Un 
i=l1 

Because of the close relation between the trapezoidal rule and midpoint rule, one 
would expect both splitting methods to behave similarly. As we shall see this is not 
so for semi-discrete PDE systems arising from initial-boundary value problems. 

The above splitting methods (1.7), (1.8) seem not to have been studied in the 
literature. A linearized version of (1.7) was introduced in [1] for s = 2. Formula 
(1.9) can be found in [13, p. 87] for s = 3, but a variety of different methods can 
be based on this formula. Indeed, the following experiment shows a remarkable 
difference in behaviour between the midpoint and trapezoidal splitting methods. 

Example 1.1. Consider the diffusion equation on domain Q = (0,1)2, 

ut = Uxx + Uy + f (x, y, t) onQ, 

u= 0 on F = OQ, 

with given initial value at t = 0 and source term f derived from the exact solution 

u(x, y, t) = et x(1 -x)y(1 -y)(16 + y). 

The spatial derivatives are discretized with standard second order finite differences, 
and we make a dimensional splitting with s = 2 and equal distribution of the source 
term. So, F1 (t, u) will be the finite difference approximation of uxx + 'f(t), and 
likewise for F2 in the y-direction. Note that since the exact solution is a polynomial 
in x and y of degree <3, there will be no spatial error. The spatial grid has mesh 
width h = 1/(m + 1) in both directions with m the number of grid points per 
direction. In Table 1.1 we have listed the errors, measured in the discrete L2-norm, 
at the end time T = 0.75 with h = 1/40 and with different values of the time step r. 
Clearly there is a huge difference between the two splitting methods. The difference 
becomes even more striking if the spatial mesh is refined, see Table 1.2. Although 
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TABLE 1.1. L2-errors for h = 1/40 with trapezoidal splitting and 
midpoint splitting. 

1/r f 10 20 40 80 

TrapSplit 3.3 10-3 8.3 10-4 2.1 10-4 5.2 10-5 

MidpSplit 3.3 - 8.5 10-1 2.1 10-1 5.3 10-2 

TABLE 1.2. L2-errors for h = 1/80 with trapezoidal splitting and 
midpoint splitting. 

1/T 1I 10 20 40 80 

TrapSplit 3.4 10-3 8.5 10-4 2.1 10-4 5.3 10-5 

MidpSplit 9.2 2.3 5.8 10-1 1.5 10-1 

both methods have order two (in the classical ODE sense), the error constants for 
the midpoint splitting apparently contain negative powers of h. 

In this paper both methods will be analyzed to explain these numerical results. 
The method of Yanenko has been analyzed in [6] for s = 2 and in the paper of Ciegis 
and Kiskis [3] for arbitrary s. Th-e analysis in the present paper follows the same 
approach. As we shall see the disappointing behaviour of the midpoint splitting in 
the above test is due to lack of so-called internal stability. Further it will be shown 
that the order of convergence for-the trapezoidal splitting can be less than 2 upon 
simultaneous refinement of mesh width and time step if s > 3, but still the results 
are favourable compared to Yanenko's method. 

This analysis is given in Sections 2, 3 and 4. In Section 5 boundary corrections 
are discussed. Section 6 contains numerical comparisons between the trapezoidal 
splitting method (1.7) and Yanenko's method (1.5)-(1.6). 

2. INTERNAL PERTURBATIONS 

2.1. Preliminaries. The analysis will be performed for the linear case 

(2.1) Fj (t, w) = Ajw + gj (t),I 

with M x M matrices Ai and gj (t) E RM. It is assumed that the problem represents 
a semi-discrete PDE, so the dimension depends on the mesh width in space h and 
some of the matrices Aj will contain negative powers of h. For inhomogeneous 
boundary conditions, the terms gj will contain the boundary values relevant to 
Aj, which will also lead to negative powers of h, see for example [6, 8] for a more 
detailed description. 

Results on stability and convergence will be obtained for the discrete L2-norm 
on RM, IIwII = (M-1wTw)l/2, under the assumption 

(2.2) wT Ajw < 0 for all w E IM. 
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This implies that for any r > 0 we have 

(2.3) 11 (I- 'TrAj)-1 l < 1 (I- rAj) (1 + TAj) < 1. 

Note that (2.2) imposes no restriction on the norm IIAj I. So, the Aj may contain 
negative powers of h with arbitrary small h > 0. Further we will use the notations 
Z = rAj and Pj = (I + ITAj), Qj = (I- ITAj). 

2.2. Internal stability of trapezoidal splitting. Consider the trapezoidal split- 
ting formula with perturbations P1, , P2s on the stages, 

(2.4) 
io = Un, 

Vbi = Vi-l + I 
TFi(tni Vi-l1) + Pi (i = 1, 2, ... s ), 

VS+i = Vs+i-1 + ITFs+l-i(tn+l? v?s+i) + Ps+i (i = 1,2, ... s), 

Un+l = V2s. 

Let en = n- un. By subtracting (2.4) from (1.7) and eliminating the internal 
quantities v)j - vj, it follows in a straightforward way that 

(2.5) en+1 = R en + dn 

with stability matrix 

(2.6) R= Q- Q- Q-'Ps P2P 
and with dn containing the internal perturbations, 

(2.7) 

dn= Q ''*'Qs-1 (Ps 'P2P + Ps ..P*3P2 + + PsPs-I + Ps) 

+QI1 Qs-Ps+, + Q 11 Q i1Ps+2 + +Q-1PQ 

So, the matrix R determines how an error already present at time tn will be 
propagated to tn+l, whereas dn stands for the local error introduced during the step. 
The usual step-by-step stability of the scheme is thus governed by R. Assuming 
that the matrices commute we have fIRtI < 1, so the method will be stable. Under 
this assumption it also follows that 

(2.8) ldn 1 < IIP111 + IIP211 + + IIP2sII1 

since any explicit factor Pj occurring in (2.7) is balanced by its implicit counterpart 
Q71. This means that the internal perturbations will not disrupt the result of a 
single step of the method. So, the method is internally stable, in the above sense. 

2.3. Internal instability of midpoint splitting. For the midpoint splitting we 
can proceed similarly as in the preceding subsection. We consider along with (1.8) 
a perturbed version 

(2.9) 
i)o = Un, 

Vi = Vi-l + 21Fi(tn+/2, si) + Pi), 

fS+i = iS+i-I + 2TFs+l-i(tn+l/2, s+i- 1) + Ps+i (i = 1,2,. , 

Un+l = V2s. 
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By eliminating the internal vectors vi - vi it follows that the global errors en = 

i4, - u, satisfy 

(2.10) en+1 = Ren + dn 

with 

(2.11) R = P1P2-. PsQ-. Q-1Qi1 

and with local errors dn now given by 

(2.12) 

d = P1 * Ps (Qs-1 1 P1 + Qs-1 ... Q2-1P2 + + Q_1Ps) d =PI'''Ps(QT1... QT11Q1.Q12..Q1S 

+ PI.. Ps-lps+l + P1 .. Ps-2ps+2 + + PiP2s-I + P2s. 

Note that the stability matrix R has a similar structure as with the trapezoidal 
splitting. Again, if the matrices Aj commute, then the assumption (2.2) implies 

ftRII < 1. However, the propagation of the internal perturbations is now completely 
different. We only have a moderate propagation of P1 and P2s. For the other 
perturbation there are more explicit factors than implicit ones. With increasing 
stiffness, that is, if h -? 0, these explicit factors may introduce a blow-up of the 
local error dn. So, the midpoint splitting is not internally stable for small h. 

This lack of internal stability will necessitate a very accurate solution of the 
implicit relations in the internal stages to make the factors pi small. As we shall see 
in the next section, the midpoint splitting seems unsuited for stiff ODEs anyway, 
since the local discretization errors are also not bounded uniformly in the mesh 
width h. 

3. LOCAL DISCRETIZATION ERRORS 

3.1. Local errors for trapezoidal splitting. The error bounds will be based on 
derivatives of the exact solution u(t) and mpj (t) = Fj (t, u(t)). If the PDE solution is 
smooth, we may assume that these derivatives are bounded uniformly in the mesh 
width h. Error bounds can also be derived directly in terms of the PDE solution 
by including the spatial errors in the derivation, see [14], but for simplicity we shall 
consider here the error with respect to the ODE solution. 

In the following we shall use the notation 0(QrP) to denote a vector or matrix 
whose L2-norm is bounded by COP with constant C > 0 independent of h. So, in 
particular, we do not have Ai = 0(1) if Aj contains discretized spatial derivatives. 

Suitable expressions for the local discretization errors can be easily derived by 
using the internal perturbations. Consider (2.4) with i4n = u(tn), so that en = 
u(tn) -un is the global discretization error. Hence, dn is then the local discretization 
error, that is, the error introduced in one single step of the method. For the 
intermediate vectors i3i we can take v3i = u(tn) (1 < i < s) and is+i = u(tn+l) 
(1 < i < s). Note that the actual choice for these vectors is not important since we 
are only interested in the overall local error dn, but with the above choice we get 
simple expressions for the residuals, namely 

Pi = - 2 r(oi (tn) (i =1, , s), 

Ps+1 = u(tn+l) - U(tn) - 'TrOs(tn+l)i 

Ps+i = -2'T(pS+1-i(tn+1) (i = 2,. ,s). 
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We shall elaborate the error for s = 2 and s = 3. Inserting the above residuals 
in (2.7), we obtain for s = 3 

dn = (I-' Z1)-1(I- Z2)-1(I- 'Z3) 1((I + 2Z3) (I + 2Z2) 2T1 so(tn) 

-(I + 2Z3) "To2(tn) - wp3(tn) + U(tn+1) - U(tn) - "T(p3(tn+1) 

-(I- 'Z3) 2T(P2(tn+1) - ( -Z3) (I- 'Z2)2TP1(tn+?1)) 

Using 

U(tn+l) -U(tn) = 2T (F(tn XU(tn)) + F(tn+1, u(tn+1)))- T3u"'(tn+l/2) + 

it follows by some calculations that 

(3.1) 

dn, = (I- 'ZT)-1(I- Z2 )-1(I _Z3)(-TZ3Z2 (1 (tn+l/2) 

+ T2 (Z2 + Z3)yIjtn+l/2) + T Z3(P (tn+l/2)) + 0(T3) 

The corresponding formula for s = 2 simply follows from this by setting Z3 = 

0, (p3 = 0. So, for s = 2 the local discretization error is 

(3.2) dn = (I- 'ZI)- (I- Z2) 142Z2 1(tn+1/2)+0(T3). 

Using (2.3) it follows directly from (3.2) that dn `0(2). Note that for fixed h we 
get an 0(w3) bound due to the hidden r in Z2. To obtain a similar bound uniformly 
in h, we need the compatibility condition A2( OI(t.) = 0(1). This condition will only 
be satisfied in special cases, namely where 91j(t) satisfies homogeneous boundary 
conditions relevant to A2. It should be noted that also fractional order results are 
possible: if A?toj(t) = 0(1) with a E (0,1), it can be shown that dn = -( 2+a 

For the formula with s = 3 similar considerations hold. To guarantee that 
dn = 0(T3) we now get several compatibility conditions. If we merely assume that 
A2 and A3 commute, it follows from (2.3) only that dn = 0((T), which is a poor 
result of course since this is the error introduced in a single step. 

We note that, assuming smoothness of the exact solution, compatibility condi- 
tions like A2p1 (t) = 0(1) will certainly hold if there are no boundary conditions 
present, for example with periodicity conditions. So, any deviation from the clas- 
sical ODE results is here entirely due to boundary conditions. 

In the next section we shall present some convergence results for initial-boundary 
value problems where the compatibility conditions need not hold. 

3.2. Local errors for midpoint splitting. In the same way we can derive an 
expression for the local discretization errors of the midpoint splitting. We take 
f)O U(tn), fv2s = u(tn+1) and Vj = u(tn+1/2) for the other j. This gives residuals 

P1 = U(tn+l/2) - U(tn) - "T(P1(tn+1/2) 

Ps?i = -2T(,L(tn+1/2) (i = 1... ,s ), 

Ps+i = -u(ts+li (tn+l/2) - i = 1(), 

p2s =U(tn+l ) -U(tn+1/2 ) - 2 T01 (tn+1/2) - 
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We elaborate the local error for s = 2 only. Since the result will be negative 
it is not necessary to consider larger values of s. For s = 2 we obtain P2 = p3= 

-2T(p2(tn+1/2) and 

Pi = 1T(W2(tn+1/2) - 1T2U (tn+l/2) + 0((T3), 

p4 = 1'T(2(tn+1/2) + T2 U (tn+1/2) + 0(,T3). 

After some calculations it follows that 

(3.3) dn = (R - I) ( TZ1p2(tn+T1/2) T2u"(tn+1/2)) + (T3). 

In general, the factor with ZIp2 contains negative powers of h, and these are not 
countered by R - I, which is 0(1) only, not smaller. So, we can expect a growth of 
the temporal local discretization error if the mesh width h is decreased. The global 
discretization error then will show a similar unpleasant behaviour. This is precisely 
what was observed in the numerical results of Tables 1.1 and 1.2. 

Already we can conclude that the midpoint splitting, in its present form, is 
not suited for PDE problems with boundary conditions. Also with boundary cor- 
rections, see Section 5, this method seems not competitive with the trapezoidal 
splitting. 

Remark 3.1. The midpoint splitting (1.8) is formed by taking first a half step T,/2 

with "backward Euler splitting" and then a half step (Dr/2 with "forward Euler 
splitting". So, Un+1 = 4i-/2'Fr/2 Un, and globally we can write 

Un = (4Dr/2 Qr/2 )nUo - 

Note that this can also be written in the form 

Un = 4>Dr/2( Q-/24'/2) Qr/2 U0, 

and Tr/2(Dr/2 is just a trapezoidal splitting step, the same as (1.7) only here with 
reversed order of the components Fj. So, in this sense the midpoint and trapezoidal 
splitting are similar. It follows that with respect to certain qualitative features, such 
as stationary solutions, periodic solutions and invariant manifolds, both methods 
will behave in a similar manner. However, as we saw above, with respect to tem- 
poral discretization errors the trapezoidal splitting behaves much better than the 
midpoint splitting. This is possible because (Dr/2 will be far from identity if the 
component functions Fj contain negative powers of h. 

4. GLOBAL DISCRETIZATION ERRORS 

4.1. Error bounds for trapezoidal splitting. In this section convergence results 
will be derived for the trapezoidal splitting with s = 2 and s = 3. At the end of the 
section a comparison will be made with known results for the method of Yanenko 

(1-5)-(1.6). 
Throughout this section it will be assumed that the trapezoidal splitting is stable, 

(4.1) IIRnll < C for all n > 1 

with a constant C = 0(1). As mentioned already in Section 3, this certainly holds 
if the matrices Aj commute and satisfy (2.2). Under this assumption one can prove 
convergence by bounding the local errors. However these local error bounds often 
give too pessimistic results, see for example [2, 9] for Runge-Kutta methods and 
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[3, 6, 8] for splitting methods. We shall use the error decomposition as in [6], 

(4.2) 

dn= (R-I)cn +qn with cn = 0('Tp), Xn = 0(Tp+l), Xn+l-n = 0(Tp+l). 

It is easy to show that this implies en = 0(TrP) by writing out the global error in 
full before bounding the various contributions. Note that (4.2) implies dn = 0('TP) 

only, and the fact that we have the same order for the global error en is a super- 
convergence phenomenon. This local error decomposition is only interesting for 
stiff equations; for fixed h we would have R - I = 0(Tr), in which case (4.2) gives 
dn = (Tp+?l). 

In the following we use the notation A = A1 + A2 + ... + As. 

Theorem 4.1. Consider the trapezoidal splitting with s = 2, and assume that 

(4.3) A-1A2so1k)(t) = 0(1) 

for k = 1, 2 and t E [0, T]. Then the global discretization errors satisfy en = 0((T2) 
for tn E [0? T]. 

Proof. We have 

R -I = (I - 'Z)-'(I - Z2)- (ZI + Z2) 

Hence the local error (3.2) can be written as 

dn = (R - I)A-1A2 4 2p (tn+1/2) + (w3). 

Clearly this fits into the form (4.2) with (n = Tr2A` A2y'(tn+1/2), and thus we 
obtain the second order convergence result. 

Note that the above result also holds for noncommuting A1 and A2. However, 
to verify the underlying assumptions it is helpful to assume that the matrices do 
commute. It is easy to show that if A1 and A2 are negative definite and commuting, 
then A-1A2 = 0(1). 

It is obvious from the proof that the assumption in the theorem could be formu- 
lated a bit more general. What we need is only the existence of a function v, with 
v(t),v'(t) = 0 (1), satisfying Av(t) = A2(p'(t) for all t. This would allow A to be 
singular. The following results permit a similar generalization. 

Theorem 4.2. Consider the trapezoidal splitting with s = 3 and let M = A + 
I T2A3A2A1. If it holds that 

(4.4) TM-l1A3A2 ,o(k) (t) = 0 (1) 

for k = 0,1 and t E [0,T], then en = O(T) for tn E [O,T]. Under the stronger 
condition 

(4.5) 
M-1 (A3A2 (k) (t) - (A2 + A3)y(k+l)(t) - A3y k?1) (t)) (l(1) 

for k = 0, 1 and t E [0, T], we have en = 0(9(2) for tn E [0 T]. 

Proof. For s = 3 we have 

R - I = (I-2 ~Z1) -1(I- Z2) -1 (I Z3) -1 (Z(z + Z2 + Z3) + Z3Z2Z1i) 

By using (3.1), the results follow in the same way as in the previous theorem. O 
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Corollary 4.3. Suppose the matrices Aj are negative definite and commuting. If 
either A2 = 0(1) or A3 = 0(1), then en = 0(w2) for tn E [O,T]. 

Proof. If the Aj are commuting and negative definite, then 

(A + IT2A3A2A,)-1Aj = 0(1), 

and using Ai = (9(1) for i = 2 or 3,.it follows that (4.5) is satisfied. O 

Corollary 4.4. Let a E (0, 1), 23 > 0 with 2 - 4a < f3. Suppose the matrices 
Aj are commuting and negative definite. Suppose in addition that h2Aj = 0(1), 
Ac Ac (p, (t) = ((1) and rh- = 0(1). Then en = 0(9() for tn E [0, T]. 

Proof. If the Aj are commuting and negative definite the expression in (4.4) can 
be written as 

[wA( /2)-A(l/2)] [(A + - r2A3A2A1)-'A3/ A/2 [Ac Ace (t)], 

and (A + Iw2A3A2A1)-1A1/2A1/2 = 0(1). Using 2- 4a < f3, h2Aj (9(1) 

and Th- = 0(1), it follows that TA(1/2) 'A(1/2)-a = 0 (1), and thus (4.4) will 
hold. D 

We note that the last corollary is relevant to parabolic equations. For the heat 
equation with Dirichlet boundary conditions we can apply this result with arbitrary 
ae < 1/4, see [2] or [8], for instance. An application will be given in Section 6. 

4.2. Remarks on related results. A convergence result for the ADI-Peaceman- 
Rachford method has been presented in [8] for s = 2, showing also second order 
convergence under the assumption (4.3). It is somewhat surprising that the same 
result is valid for the trapezoidal splitting since the internal vectors vj are not fully 
consistent. 

For Yanenko's method (1.5)-(1.6) applied to the s-dimensional heat equation, a 
similar analysis has been presented in [6] for s = 2 and in [3] for arbitrary s. The 
results are less favourable than for the trapezoidal splitting. Even for the simple 2- 
dimensional heat equation with homogeneous Dirichlet conditions, constant source 
term and T/h = 0(1) we will have only en = 0((T1/2) [3, 6], and the order of 
convergence 1/2 is also valid for s > 3 [3]. In Section 6 we shall give some numerical 
comparisons between (1.5)-(1.6) and the trapezoidal splitting (1.7). 

The order reduction due to boundary conditions can also be observed for Runge- 
Kutta methods, see Brenner et al. [2] for instance. In a recent paper, Lubich and 
Ostermann [11] have shown that for strongly A-stable Runge-Kutta methods, ap- 
plied to parabolic equations, the classical order of convergence holds in the interior 
of the spatial domain. In some numerical tests on parabolic problems we observed 
that the same seems to hold for the trapezoidal splitting and Yanenko's method, in 
spite of the fact that these methods are not strongly stable for very stiff eigenvalues. 

5. BOUNDARY CORRECTIONS 

The fact that the splitting methods, which are second order in the classical 
ODE sense, do not always give second order convergence uniformly in h is due to 
the boundary conditions, see Section 3. One may therefore hope that this order 
reduction will disappear if we treat the boundaries as much as possible in the same 
way as the interior region. The formulas in Mitchell and Griffiths [13], Sections 
2.12, 2.16, and LeVeque [10] are all constructed along this principle. 
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Boundary corrections can be easily derived for rectangular regions Q. Assume 
for the moment that Dirichlet conditions are given on the whole boundary F. Let 
Ii be that part of the boundary on which the values are relevant to Fi, and let 

rj...,k = U F= i Ffor j < k. If Fi contains no discretized spatial derivatives, then 
Ii is empty. In case Fi does contain spatial derivatives we can apply Fi on Fj for 
j / i, but not on Ii itself. 

Due to its simple form it is easy to derive boundary corrections for the trapezoidal 
splitting. We note that vo = un and V2s = Un+1 are consistent approximations to 
the exact solution u. Further, in (1.7) we need the value of vi-1 on Fi (i = 1,. . , s), 
whereas vs+i must be known on Frs+,i (i = 1, *.. , s). For the corrected boundary 
conditions of the trapezoidal splitting we take vo = u(tn) on F, and subsequently 

(5.1) vi = vi_1 + ITFi(tn,vi_I) on ri+?,...,s 

for i = 1, 2, * , s - 1, and likewise V2s = u(tn+1) on F, 

(5.2) V2s-j = V2s+1j - 2TFj(tn+1V2s+Il-j) on ]?j+ ,...,s 

forj=1,2,*. ,s-1. 
With von Neumann boundary conditions the formulas (5.1) and (5.2) should be 

used to prescribe the outward normal derivatives of vi and vs+i, as in [10]. 
A natural way to derive boundary corrections for the midpoint splitting is to set 

Vs = u(tn+1/2) on F, and then use (1.8) on the boundary to obtain 

(5-3) Vsi=Vs?(i-l) Fs+l-i(tn+l/2 Vs?(i-l)) on Fi.i-i 

for i = 1, 2, ... , s - 1. In some numerical tests the results of the midpoint splitting 
method showed considerable improvement with these boundary corrections, but 
still the midpoint splitting was not competitive with the trapezoidal splitting, due 
to its lack of internal stability. Therefore, we shall no longer consider this method. 

For Yanenko's method the situation is more complicated, due to the fact that 
vi cannot be written explicitly in terms of either vi-1 or vi+1, and the values of 
vi are now needed on both Fi and `i+1 (i = 1,2, - ,s-1) for the step (1.5). 
For (1.6) this is similar, of course. Consider, for example, the first stage in (1.5), 
where v1 is implicitly defined in terms of vo. Starting with vo = u(tn) on F, we can 
approximate the implicit relation by 

V1 u(tn) ? rFI(tn, U (tn)) 

However, since F1 cannot be applied on F1, in general, we can use this formula 
only on F2 in the second stage of the method. As we have F,(t, u(t)) = u'(t) - 

EZ;=2 Fj (t, u(t)), we can also take the approximate formula 
S 

VI1 U(tn+l) -TZ Fj(tn+l? U(tn+l)), 

j=2 

which can now be used on F1. For the other vj we can proceed similarly. This gives 
for the vi (i = 1, 2, , s - 1) in (1.5) the formulas 

vi= u(tn) +TZ Fj(tn, u(tn)) on ]i+, 

(5.4) j=I 

Vi= U(tn+l) -T 
E Fj(tn+1, U(tn+?)) on Fi- 

j=i+l 
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Likewise for the vs+i (i = 1, 2,.*, s - 1) in (1.6) we take 
s 

Vs+i = U(tn+l) +T E7Fj(tn+I,U(tn+l)) on Fs?j, 

(5.) 
j=s?l-i -s+-i 

Vs+i= u(tn+2)-TZEFj (tn+2vU(tn+2)) on F+ i- 
j=1 

Numerical results in [10] indicate that a better accuracy may be obtained if in 
(5.4),(5.5) higher order terms of r are included to give a better approximation of 
the implicit relations. However, if s > 2 or nonlinear terms are involved, this leads 
to rather complicated correction terms. 

We have not attempted to perform a detailed error analysis for the above bound- 
ary corrections along the lines of the previous section. Instead, we shall present in 
the next section several numerical results. 

6. NUMERICAL COMPARISONS 

In this section some numerical results are presented for Yanenko's method (1.5)- 
(1.6) and the trapezoidal splitting method (1.7). Note that the computational work 
is almost identical for both methods. The measured error is the difference between 
the numerical results and the exact PDE solution, that is, the restriction of u to the 
grid. This includes also spatial errors, but it has been verified that the temporal 
errors are dominant in the following tables. 

Example 6.1. We consider the 2-dimensional diffusion-reaction equation on spa- 
tial domain Q = [0, 10]2 and t E [Q, 10], 

Ut =uXX + uyy + u2(1-u) on Q, 

with initial condition and Dirichlet boundary conditions chosen according to the 
exact solution 

u(x, y, t) = (1+ exp(2 (x + y-t))) 

This solution consists of a wave traveling diagonally over the domain. The spatial 
derivatives are discretized with standard second order finite differences. Let 62 (t) 
stand for the finite difference operator approximating uxx with the associated time- 
dependent boundary conditions for x = 0 and x = 10. Likewise 6b(t) approximates 
UYY with boundary conditions at y = 0, y = 10. We consider the following splitting 
with s = 3, 

(6.1) Fi(t, w) = [6(t)] w, F2 (t, w) = [62 (t)] w, F3 (t, w) = W2 (1- W). 

The multiplications in F3 are to be interpreted componentwise. The spatial grid 
has mesh width h in both directions. In Table 6.1 the errors in L2-norm are listed 
at time T = 10 with r = h = 10/N. Table 6.2 contains the same errors for the 
schemes with boundary corrections according to the formulas of Section 5. 

In this example the trapezoidal splitting gives second order accuracy without 
boundary corrections. Although the assumptions of Corollary 4.3 are not strictly 
fulfilled, the result seems to apply here since A3 = 0(1), where A3 is the Jacobi 
matrix associated with the reaction term F3. Yanenko's method gives a low order of 
convergence without boundary corrections, also in agreement with the theoretical 
results for the linear case [6, 3]. With boundary corrections the second order con- 
vergence is restored, but still the results are less accurate than for the trapezoidal 
splitting. 
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TABLE 6.1. Splitting (6.1). L2-errors for Yanenko's method and 
trapezoidal splitting, no boundary corrections. 

N 10 20 40 80 

Yanenko 1.5 10-2 6.9 10-3 4.1 10-3 2.7 l0-3 

TrapSplit 3.8 10-3 9.9 10-4 2.5 10-4 6.3 10-5 

TABLE 6.2. Splitting (6.1). L2-errors for Yanenko's method and 
trapezoidal splitting, with boundary corrections. 

N 10 20 40 80 

Yanenko 1.1 10-2 2.9 10-3 7.4 10-4 1.8 10-4 

TrapSplit 3.2 10-3 8.2 10-4 2.0 10-4 5.1 10-5 

Example 6.2. We consider the same problem as in Example 6.1, but now with 
the splitting 

(6.2) F1 (t, w) = w2(1 - w), F2(t, w) = [62 (t)] w, F3(t, w) = [62 (t)] w. 

Here we cannot expect second order convergence for the trapezoidal splitting since 
both A2 and A3 are not 0(1). The errors are listed in Tables 6.3 and 6.4 (with 
boundary corrections). Again the errors are measured in the L2-norm at T = 10 
with r = h = 10/N. 

We see that here boundary corrections are also needed for the trapezoidal split- 
ting to obtain second order accuracy. Without these corrections a first order con- 
vergence could be expected from Corollary 4.4. The actual order of convergence 
seems slightly better in Table 6.3, but tests with smaller r and h did show an order 
of convergence close to one. 

As in the previous example the results for the trapezoidal splitting are more 
favourable than for Yanenko's method. 

TABLE 6.3. Splitting (6.2). L2-errors for Yanenko's method and 
trapezoidal splitting, no boundary corrections. 

N 10 20 40 80 
Yanenko 1.4 10-2 7.1 10-3 4.2 10-3 2.8 10-3 

TrapSplit 6.3 10-3 1.8 10-3 5.9 10-4 2.3 10-4 

TABLE 6.4. Splitting (6.2). L2-errors for Yanenko's method and 
trapezoidal splitting, with boundary corrections. 

N 10 20 40 80 

Yanenko 5.7 10-3 1.6 10-3 4.1 10-4 1.1 10-4 

TrapSplit 2.1 10-3 4.9 10-4 1.2 10-4 2.8 10-5 
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Example 6.3. In this final example we consider advection coupled with a (mildly) 
stiff reaction term, on domain Q = [0,1]2 and t E [0,1], 

ut =au? + bu? + f(u) on Q, 

with given velocities a(x, y, t) = 2ir(y -1 ), b(x, y, t)) = 2rQT -x), and with 

u(x,Y, t)= ul (X' v't) ), (u) = (klul 1 k2U1U 
2). 

The reaction constants are chosen as k, = k2 = 100. Dirichlet conditions are 
given at the inflow boundaries. At the outflow boundaries we shall use an upwind 
discretization in space, in the interior second order central differences are used. The 
spatial operators are now no longer negative definite, there will be eigenvalues close 
to the imaginary axis. 

The velocity field will give a rotation around the center (2 v) of the domain. 
The exact solution can be found by superposition of this rotation upon the solution 
of the ODE system v'(t) = f(v(t)). To solve this ODE, note that we will have 
v1 (t) + v2 (t) = d, constant in time. By eliminating v2 it follows that 

V/ = Cv 1-k2 - 1 

with c = d k2- kl, and the exact solution is given by 

c vi(0) exp (ct) 

vi(t)c= +?k2vi(0)(exp(ct)-1) v2(t)=d-vi(t). 
For the PDE we take the initial value 

Ul (X, y, o) =1 + '4 exp(- 10(x - 1)2 _ 10(y _ _)2), U2 (X, Y, 0) =0. 

In the rotating coordinate system 

=cos(27rt)(x - 1) - sin(27rt)(y - 1), q = sin(27rt)(x - 1) + cos(27rt)(y -) 

we define 

d = d(x, y, t) = 4 exp(-1042-10(rq-j)2), c = c(x, y, t) = d(x, y, t)kl-k2, 

giving the solution 

(6.3) 

ul (X, y, t) = ckd (exp(ct)-1) u2(X, y, t) = d-ul (x, y, t). 

An illustration of this solution is shown in Figure 1. 
Since the reaction term in this problem introduces a strong transient phase, we 

use an increasing step size sequence with small step sizes at the beginning. If the 
initial step size is too large the Newton process for the reaction term diverges. We 
have chosen a ratio n = 20 between the first and last step size. If N is the number 
of steps, then 0 = N ,To = (1-1/0)/( -1) and rj = ToO for j = 1, 2, ..., N. For 
Yanenko's method we used a modification such that the step sizes in (1.5) and (1.6) 
are equal, namely, the above procedure was applied with N replaced by N/2 and 
the resulting step sizes were used to go from tn to tn+2. Also with these increasing 
step sizes we found divergence for both methods in the very first step with N = 10, 
so the following results are with N > 20. The mesh width is taken as h = 1/N. 
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?'1 S - 0:'9 
1 1 

FIGURE 1. Solutions (6.3) at t = 0 (top) and t = 1 (bottom) after 
one rotation. Component u1 to the left and u2 to the right. 

We consider splitting with F1 x-advection, F2 y-advection and F3 for the 
reaction term. The L2-errors at time T= 1 are listed in Table 6.5. 

TABLE 6.5. Advection-reaction equation. L2-errors for Yanenko's 
method and trapezoidal splitting, no boundary corrections. 

N 20 40 80 160 

Yanenko 3.0 10-2 1.4 10-2 5.1 10-3 1.8 10-3 

TrapSplit 3.0 10-2 1.3 10-2 4.8 10-3 1.7 10-3 

Both methods give very similar results with an order of convergence approxi- 
mately 3/2. We also tested the trapezoidal splitting with boundary corrections at 
the inflow boundaries, and with F1 being the reaction term and F2, F3 approximat- 
ing the advection in x and y direction, respectively. Also these tests gave nearly 
identical results. 

At the moment we do not have a theoretical explanation for these results, not 
even a heuristic one as in the two preceding examples. A more detailed analysis 
of the local error (3.1) seems to be needed for this specific example. The fact that 
boundary corrections did not give an improvement of the results indicates that the 
stiffness of the reaction term is an important factor here. 
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